Search results for "Magnetic domain"

showing 10 items of 100 documents

Element-Selective Magnetic Imaging in Exchange-Coupled Systems by Magnetic Photoemission Microscopy

1998

We have used a photoemission microscope to obtain element-resolved magnetic contrast in stacked magnetic thin film systems. Magnetic information is thereby provided by X-ray magnetic circular dichroism. Elemental sensitivity, which is crucial for studying magnetic coupling phenomena in systems with several different layers, is achieved by tuning the energy of the illuminating photons to atomic absorption edges. We present measurements of a Ni-coated Co micropattern on Cu(001), and a wedged Co/Cr/Fe(001) sample. In the former sample the Ni magnetization is seen to follow the magnetization of the Co pattern, thereby changing from an out-of-plane easy axis in areas without underlying Co to in…

Materials scienceMagnetic domainMagnetic momentCondensed matter physicsMagnetic circular dichroismAnalytical chemistrySurfaces and InterfacesCondensed Matter PhysicsSurfaces Coatings and FilmsMagnetizationParamagnetismMagnetic anisotropyX-ray magnetic circular dichroismMaterials ChemistryMagnetic force microscopeSurface Review and Letters
researchProduct

Correlation between spin structure oscillations and domain wall velocities

2013

Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls in curved nanowires. Varying domain wall velocities have been predicted to result from intrinsic effects such as oscillating domain wall spin structure transformations and extrinsic pinning due to imperfections. Here we use direct dynamic imaging of the nanoscale spin structure that allows us for the first time to directly check these predictions. We find a new regime of oscillating domain wall motion even below the Walker breakdown correlated with periodic spin structure changes. We show that the e…

DYNAMICSMOTIONMagnetic domainNanowireGeneral Physics and Astronomy02 engineering and technologyNANOWIRESSpin structure01 natural sciencesArticleMAGNETIC-FIELDSGeneral Biochemistry Genetics and Molecular BiologyNuclear magnetic resonancePosition (vector)0103 physical sciencesddc:530010306 general physicsPhysicsMultidisciplinaryCondensed matter physicsDynamics (mechanics)General Chemistry021001 nanoscience & nanotechnologySTATEMagnetic fieldDomain wall (magnetism)Physics and AstronomyDomain (ring theory)0210 nano-technology
researchProduct

On the theory of domain structure in ferromagnetic phase of diluted magnetic semiconductors

2006

Abstract We present a comprehensive analysis of domain structure formation in ferromagnetic phase of diluted magnetic semiconductors (DMS) of p-type. Our analysis is carried out on the base of effective magnetic free energy of DMS calculated by us earlier [Yu.G. Semenov, V.A. Stephanovich, Phys. Rev. B 67 (2003) 195203]. This free energy, substituting DMS (a disordered magnet) by effective ordered substance, permits to apply the standard phenomenological approach to domain structure calculation. Using coupled system of Maxwell equations with those obtained by minimization of above free energy functional, we show the existence of critical ratio ν cr of concentration of charge carriers and ma…

Physicssymbols.namesakeMagnetic domainCondensed matter physicsMaxwell's equationsFerromagnetismMagnetPhase (matter)symbolsGeneral Physics and AstronomyCharge carrierMagnetic semiconductorFinite thicknessPhysics Letters A
researchProduct

Direct observation of temperature dependent magnetic domain structure of the multiferroic La0.66Sr0.34MnO3/BiFeO3 bilayer system by x-ray linear dich…

2014

Low-thickness La0.66Sr0.34MnO3 (LSMO)/BiFeO3 (BFO) thin film samples deposited on SrTiO3 were imaged by high resolution x-ray microscopy at different temperatures. The ultra-thin thickness of the top layer allows to image both the ferromagnetic domain structure of LSMO and the multiferroic domain structure of the buried BFO layer, opening a path to a direct observation of coupling at the interface on a microscopic level. By comparing the domain size and structure of the BFO and LSMO, we observed that, in contrast to LSMO single layers, LSMO/BFO multilayers show a strong temperature dependence of the ferromagnetic domain structure of the LSMO. Particularly, at 40 K, a similar domain size for…

Photoemission electron microscopyExchange biasMaterials scienceFerromagnetismCondensed matter physicsX-ray magnetic circular dichroismMagnetic domainMagnetic circular dichroismGeneral Physics and AstronomyMultiferroicsDichroismJournal of Applied Physics
researchProduct

Spin orbit torque switching in Ta/CoFeB/MgO without longitudinal fields

2015

Intense investigations are carried out on novel magnetic materials systems with perpendicular magnetic anisotropy (PMA), where new spin-orbit effects occur due to structural inversion asymmetry (SIA). So called spin-orbit torques (SOTs), have been observed for the first time in PMA nano-structures with SIA, when an electric current is injected [1-3], leading to ultra-efficient current-induced domain wall motion and current-induced magnetization switching [2,3].

MagnetizationMagnetic anisotropyMaterials scienceMagnetic domainCondensed matter physicsSpin polarizationDemagnetizing fieldMagnetic particle inspectionSingle domainMagnetic dipole2015 IEEE Magnetics Conference (INTERMAG)
researchProduct

Switching the Magnetic Vortex Core in a Single Nanoparticle.

2016

Imaging and manipulating the spin structure of nano- and mesoscale magnetic systems is a challenging topic in magnetism, yielding a wide range of spin phenomena such as skyrmions, hedgehog-like spin structures, or vortices. A key example has been provided by the vortex spin texture, which can be addressed in four independent states of magnetization, enabling the development of multibit magnetic storage media. Most of the works devoted to the study of the magnetization reversal mechanisms of the magnetic vortices have been focused on micrometer-size magnetic platelets. Here we report the experimental observation of the vortex state formation and annihilation in individual 25 nm molecular-bas…

PhysicsCamps magnèticsCondensed matter physicsSpin polarizationMagnetic domainNanotecnologiaMagnetismGeneral EngineeringGeneral Physics and AstronomySpin engineering02 engineering and technologyCiència dels materials021001 nanoscience & nanotechnologyMagnetostatics01 natural sciencesVortex stateMagnetization0103 physical sciencesMagnetic nanoparticlesGeneral Materials Science010306 general physics0210 nano-technologyACS nano
researchProduct

Correlation between spin structure oscillations and domain wall velocities (presentation video)

2014

Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls. Varying domain wall velocities have been predicted to result from intrinsic effects such as oscillating domain wall spin structure transformations and extrinsic pinning due to imperfections. We use direct dynamic imaging of the nanoscale spin structure to directly check these predictions. We find a new regime of oscillating domain wall motion even below the Walker breakdown correlated with periodic spin structure changes and we show that the extrinsic pinning from defects in the nanowire only affec…

PhysicsDomain wall (magnetism)Condensed matter physicsMagnetic domainMagnetismPosition (vector)Dynamic imagingDomain (ring theory)NanowireSpin structureSPIE Proceedings
researchProduct

Temperature-induced martensite in magnetic shape memory Fe2MnGa observed by photoemission electron microscopy

2012

The magnetic domain structure in single crystals of a Heusler shape memory compound near the composition Fe2MnGa was observed during phase transition by photoelectron emission microscopy at Beamline 11.0.1.1 of the Advanced Light Source. The behavior is comparable with recent observations of an adaptive martensite phase in prototype Ni2MnGa, although the pinning in the recent work is an epitaxial interface and in this work the effective pinning plane is a boundary between martensitic variants that transform in a self-accommodating way from the single crystal austenite phase present at high temperatures. Temperature dependent observations of the twinning structure give information as to the …

Condensed Matter::Materials SciencePhotoemission electron microscopyMaterials sciencePhysics and Astronomy (miscellaneous)Magnetic domainMagnetic shape-memory alloyFerromagnetismCondensed matter physicsMagnetismMartensitePseudoelasticityCrystal twinningApplied Physics Letters
researchProduct

Current-Induced Dynamics of Chiral Magnetic Structures: Creation, Motion, and Applications

2021

Magnetic textures can be manipulated by electric currents via the mechanisms of spin-transfer and spin-orbit-torques. We review how these torques can be exploited to create chiral magnetic textures in magnets with broken inversion symmetries, including domain walls and skyrmions. These chiral textures can also be moved by (electric) currents and obey very rich dynamics. For example, magnetic domain walls feature the famous Walker breakdown, and magnetic whirls are subject to the skyrmion Hall effect, which is rooted in their real-space topology. These properties led to a variety of potential novel applications which we briefly overview.

PhysicsClassical mechanicsMagnetic domainHall effectMagnetSkyrmionHomogeneous spacePhysik (inkl. Astronomie)Electric current
researchProduct

Ultrafast Optical Demagnetization manipulates Nanoscale Spin Structure in Domain Walls

2012

During ultrafast demagnetization of a magnetically ordered solid, angular momentum has to be transferred between the spins, electrons, and phonons in the system on femto- and picosecond timescales. Although the intrinsic spin-transfer mechanisms are intensely debated, additional extrinsic mechanisms arising due to nanoscale heterogeneity have only recently entered the discussion. Here we use femtosecond X-ray pulses from a free-electron laser to study thin film samples with magnetic domain patterns. We observe an infrared-pump-induced change of the spin structure within the domain walls on the sub-picosecond timescale. This domain-topography-dependent contribution connects the intrinsic dem…

DYNAMICSMagnetic domainGeneral Physics and AstronomyMAGNETIZATION REVERSALPhysics::OpticsLarge scale facilities for research with photons neutrons and ionsNanotechnology02 engineering and technologyElectronFILMS01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyOptical pumping0103 physical sciencesddc:530010306 general physicsPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]MultidisciplinaryCondensed matter physicsSpins[PHYS.PHYS]Physics [physics]/Physics [physics]Demagnetizing fieldALLOYGeneral Chemistry021001 nanoscience & nanotechnologyPicosecondFemtosecondX-RAYLASER0210 nano-technologyUltrashort pulse
researchProduct